Text Formatting
Mathematical Expressions
Document Structure
Vector Spaces in LaTeX
Vector spaces are fundamental structures in linear algebra. LaTeX provides excellent notation for representing vector spaces, subspaces, linear transformations, and related concepts. This guide covers the essential LaTeX commands for typesetting vector space mathematics.
Vector Space Notation
Basic notation for vector spaces and their elements:
Common Vector Spaces
\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n
Standard vector spaces over real numbers, complex numbers, and general fields.
Vector Space Membership
\mathbf{v} \in V, \quad V \subset \mathbb{R}^n
Indicating that a vector belongs to a vector space, and a vector space is a subset of another.
Function Spaces
C[a,b], \quad L^2(\Omega), \quad H^1(\Omega)
Common function spaces: continuous functions, square-integrable functions, and Sobolev spaces.
Basis and Dimension
Representing basis vectors and dimensions:
Standard Basis
\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}
The standard basis for ℝⁿ.
General Basis
\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}
A general basis for an n-dimensional vector space.
Dimension
\dim(V) = n
The dimension of a vector space V.
Linear Combinations and Span
Linear Combination
c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n
A linear combination of vectors.
Span
\ ext{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}
The span of a set of vectors.
Linear Independence
c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0} \implies c_1 = c_2 = \cdots = c_n = 0
The definition of linear independence.
Subspaces and Direct Sums
Subspace
U \leq V
U is a subspace of V.
Direct Sum
V = U \oplus W
V is the direct sum of subspaces U and W.
Null Space and Range
\ ext{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}
\ ext{Range}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}
Linear Transformations
Linear Transformation Definition
T: V \ o W
A linear transformation from vector space V to W.
Matrix Representation
[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}
Matrix representation of a linear transformation T with respect to bases ℬ and ℭ.
Composition of Linear Transformations
(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))
Eigenvalues and Eigenvectors
Eigenvalue Equation
A\mathbf{v} = \lambda\mathbf{v}
The defining equation for eigenvalue λ and eigenvector v.
Characteristic Polynomial
p_A(\lambda) = \det(A - \lambda I)
Eigenspace
E_\lambda = \{\mathbf{v} \in V : A\mathbf{v} = \lambda\mathbf{v}\}
The eigenspace corresponding to eigenvalue λ.
Inner Product Spaces
Inner Product
\langle \mathbf{u}, \mathbf{v} \rangle
The inner product of vectors u and v.
Norm
\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}
Orthogonality
\mathbf{u} \perp \mathbf{v} \iff \langle \mathbf{u}, \mathbf{v} \rangle = 0
For vector space notation, include these packages in your document preamble:
\usepackage{amsmath}
for basic math operations\usepackage{amssymb}
for mathematical symbols like ℝ, ℂ\usepackage{mathtools}
for enhanced math tools
Vector Spaces in LaTeX
Vector spaces are fundamental structures in linear algebra. LaTeX provides excellent notation for representing vector spaces, subspaces, linear transformations, and related concepts. This guide covers the essential LaTeX commands for typesetting vector space mathematics.
Vector Space Notation
Basic notation for vector spaces and their elements:
Common Vector Spaces
\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n
Standard vector spaces over real numbers, complex numbers, and general fields.
Vector Space Membership
\mathbf{v} \in V, \quad V \subset \mathbb{R}^n
Indicating that a vector belongs to a vector space, and a vector space is a subset of another.
Function Spaces
C[a,b], \quad L^2(\Omega), \quad H^1(\Omega)
Common function spaces: continuous functions, square-integrable functions, and Sobolev spaces.
Basis and Dimension
Representing basis vectors and dimensions:
Standard Basis
\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}
The standard basis for ℝⁿ.
General Basis
\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}
A general basis for an n-dimensional vector space.
Dimension
\dim(V) = n
The dimension of a vector space V.
Linear Combinations and Span
Linear Combination
c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n
A linear combination of vectors.
Span
\ ext{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}
The span of a set of vectors.
Linear Independence
c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0} \implies c_1 = c_2 = \cdots = c_n = 0
The definition of linear independence.
Subspaces and Direct Sums
Subspace
U \leq V
U is a subspace of V.
Direct Sum
V = U \oplus W
V is the direct sum of subspaces U and W.
Null Space and Range
\ ext{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}
\ ext{Range}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}
Linear Transformations
Linear Transformation Definition
T: V \ o W
A linear transformation from vector space V to W.
Matrix Representation
[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}
Matrix representation of a linear transformation T with respect to bases ℬ and ℭ.
Composition of Linear Transformations
(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))
Eigenvalues and Eigenvectors
Eigenvalue Equation
A\mathbf{v} = \lambda\mathbf{v}
The defining equation for eigenvalue λ and eigenvector v.
Characteristic Polynomial
p_A(\lambda) = \det(A - \lambda I)
Eigenspace
E_\lambda = \{\mathbf{v} \in V : A\mathbf{v} = \lambda\mathbf{v}\}
The eigenspace corresponding to eigenvalue λ.
Inner Product Spaces
Inner Product
\langle \mathbf{u}, \mathbf{v} \rangle
The inner product of vectors u and v.
Norm
\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}
Orthogonality
\mathbf{u} \perp \mathbf{v} \iff \langle \mathbf{u}, \mathbf{v} \rangle = 0
For vector space notation, include these packages in your document preamble:
\usepackage{amsmath}
for basic math operations\usepackage{amssymb}
for mathematical symbols like ℝ, ℂ\usepackage{mathtools}
for enhanced math tools
Text Formatting
Mathematical Expressions
Document Structure