Underleaf Logo
Underleaf
PricingBlogInstall for OverleafGet Started

Learn LaTeX

Text Formatting

  • Bold Text in LaTeX
  • Italics in LaTeX
  • Underlining in LaTeX
  • Subscript and Superscript
  • Greek Letters and Symbols

Vector Spaces in LaTeX

Vector spaces are fundamental structures in linear algebra. LaTeX provides excellent notation for representing vector spaces, subspaces, linear transformations, and related concepts. This guide covers the essential LaTeX commands for typesetting vector space mathematics.

Vector Space Notation

Basic notation for vector spaces and their elements:

  1. Common Vector Spaces

    \mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n

    Standard vector spaces over real numbers, complex numbers, and general fields.

  2. Vector Space Membership

    \mathbf{v} \in V, \quad V \subset \mathbb{R}^n

    Indicating that a vector belongs to a vector space, and a vector space is a subset of another.

  3. Function Spaces

    C[a,b], \quad L^2(\Omega), \quad H^1(\Omega)

    Common function spaces: continuous functions, square-integrable functions, and Sobolev spaces.

Basis and Dimension

Representing basis vectors and dimensions:

  1. Standard Basis

    \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}

    The standard basis for ℝⁿ.

  2. General Basis

    \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}

    A general basis for an n-dimensional vector space.

  3. Dimension

    \dim(V) = n

    The dimension of a vector space V.

Linear Combinations and Span

  1. Linear Combination

    c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n

    A linear combination of vectors.

  2. Span

    \ ext{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}

    The span of a set of vectors.

  3. Linear Independence

    c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0} \implies c_1 = c_2 = \cdots = c_n = 0

    The definition of linear independence.

Subspaces and Direct Sums

  1. Subspace

    U \leq V

    U is a subspace of V.

  2. Direct Sum

    V = U \oplus W

    V is the direct sum of subspaces U and W.

  3. Null Space and Range

    \ ext{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}

    \ ext{Range}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}

Linear Transformations

  1. Linear Transformation Definition

    T: V \ o W

    A linear transformation from vector space V to W.

  2. Matrix Representation

    [T]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}

    Matrix representation of a linear transformation T with respect to bases ℬ and ℭ.

  3. Composition of Linear Transformations

    (S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))

Eigenvalues and Eigenvectors

  1. Eigenvalue Equation

    A\mathbf{v} = \lambda\mathbf{v}

    The defining equation for eigenvalue λ and eigenvector v.

  2. Characteristic Polynomial

    p_A(\lambda) = \det(A - \lambda I)

  3. Eigenspace

    E_\lambda = \{\mathbf{v} \in V : A\mathbf{v} = \lambda\mathbf{v}\}

    The eigenspace corresponding to eigenvalue λ.

Inner Product Spaces

  1. Inner Product

    \langle \mathbf{u}, \mathbf{v} \rangle

    The inner product of vectors u and v.

  2. Norm

    \|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}

  3. Orthogonality

    \mathbf{u} \perp \mathbf{v} \iff \langle \mathbf{u}, \mathbf{v} \rangle = 0

Vector Spaces in LaTeX

Vector spaces are fundamental structures in linear algebra. LaTeX provides excellent notation for representing vector spaces, subspaces, linear transformations, and related concepts. This guide covers the essential LaTeX commands for typesetting vector space mathematics.

Vector Space Notation

Basic notation for vector spaces and their elements:

  1. Common Vector Spaces

    \mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n

    Standard vector spaces over real numbers, complex numbers, and general fields.

  2. Vector Space Membership

    \mathbf{v} \in V, \quad V \subset \mathbb{R}^n

    Indicating that a vector belongs to a vector space, and a vector space is a subset of another.

  3. Function Spaces

    C[a,b], \quad L^2(\Omega), \quad H^1(\Omega)

    Common function spaces: continuous functions, square-integrable functions, and Sobolev spaces.

Basis and Dimension

Representing basis vectors and dimensions:

  1. Standard Basis

    \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}

    The standard basis for ℝⁿ.

  2. General Basis

    \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}

    A general basis for an n-dimensional vector space.

  3. Dimension

    \dim(V) = n

    The dimension of a vector space V.

Linear Combinations and Span

  1. Linear Combination

    c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n

    A linear combination of vectors.

  2. Span

    \ ext{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}

    The span of a set of vectors.

  3. Linear Independence

    c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0} \implies c_1 = c_2 = \cdots = c_n = 0

    The definition of linear independence.

Subspaces and Direct Sums

  1. Subspace

    U \leq V

    U is a subspace of V.

  2. Direct Sum

    V = U \oplus W

    V is the direct sum of subspaces U and W.

  3. Null Space and Range

    \ ext{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}

    \ ext{Range}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}

Linear Transformations

  1. Linear Transformation Definition

    T: V \ o W

    A linear transformation from vector space V to W.

  2. Matrix Representation

    [T]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}

    Matrix representation of a linear transformation T with respect to bases ℬ and ℭ.

  3. Composition of Linear Transformations

    (S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))

Eigenvalues and Eigenvectors

  1. Eigenvalue Equation

    A\mathbf{v} = \lambda\mathbf{v}

    The defining equation for eigenvalue λ and eigenvector v.

  2. Characteristic Polynomial

    p_A(\lambda) = \det(A - \lambda I)

  3. Eigenspace

    E_\lambda = \{\mathbf{v} \in V : A\mathbf{v} = \lambda\mathbf{v}\}

    The eigenspace corresponding to eigenvalue λ.

Inner Product Spaces

  1. Inner Product

    \langle \mathbf{u}, \mathbf{v} \rangle

    The inner product of vectors u and v.

  2. Norm

    \|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}

  3. Orthogonality

    \mathbf{u} \perp \mathbf{v} \iff \langle \mathbf{u}, \mathbf{v} \rangle = 0

Underleaf Logo
Underleaf

Empowering students and researchers with AI-powered tools for academic writing.

Go to app

Company

PricingBlogLearn

© 2025 Underleaf. All rights reserved.